A bandstructure-invariant deflation for real symmetric matrices
نویسندگان
چکیده
منابع مشابه
Inner deflation for symmetric tridiagonal matrices
Suppose that one knows an accurate approximation to an eigenvalue of a real symmetric tridiagonal matrix. A variant of deflation by the Givens rotations is proposed in order to split off the approximated eigenvalue. Such a deflation can be used instead of inverse iteration to compute the corresponding eigenvector. © 2002 Elsevier Science Inc. All rights reserved.
متن کاملOn deflation for symmetric tridiagonal matrices
K.V. Fernando developed an efficient approach for computation of an eigenvector of a tridiagonal matrix corresponding to an approximate eigenvalue. We supplement Fernando’s method with deflation procedures by Givens rotations. These deflations can be used in the Lanczos process and instead of the inverse iteration.
متن کاملSpectral Functions for Real Symmetric Toeplitz Matrices
We derive separate spectral functions for the even and odd spectra of a real symmetric Toeplitz matrix, which are given by the roots of those functions. These are rational functions, also commonly referred to as secular functions. Two applications are considered: spectral evolution as a function of one parameter and the computation of eigenvalues.
متن کاملReal Invariant Matrices and Flavour-Symmetric Mixing Variables with Emphasis on Neutrino Oscillations
In fermion mixing phenomenology, the matrix of moduli squared, P = (|U |2), is well-known to carry essentially the same information as the complex mixing matrix U itself, but with the advantage of being phase-convention independent. The matrix K (analogous to the Jarlskog CP -invariant J) formed from the real parts of the mixing matrix “plaquette” products is similarly invariant. In this paper,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1980
ISSN: 0024-3795
DOI: 10.1016/0024-3795(80)90094-4